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Abstract 

The purpose of this senior project is to minimize the 

weight design of 3D steel trusses by using Balancing 

Composite Motion Optimization (BCMO), a parameter-free 

optimization method and effectively simple to use. Without the 

use of parameters for the optimization process, BCMO 

eliminates the optimization problems about the selection of 

unsuitable parameters that are used by the parameter-based 

algorithm and creates a balance between exploration and 

exploitation capacities. In addition, BCMO provides a faster 

convergence rate and much less computing time than the other 

parameter-based optimization methods. For the steel design, it 

emphasizes the use of pipe steel design (Round HSS Section) 

and angle steel design for 3D truss design following the 

specification for structural steel buildings from [1] an American 

Institute of Steel Construction (AISC 360-16).  The project 

studies the efficiency and accuracy of BCMO for weight 

minimization. The project demonstrates the accuracy of the 

BCMO algorithm by verifying the benchmark problems with 

the previous studies. Then, it will compare its performance of 

weight minimization of 3D steel trusses with the PSO 

algorithm. The results illustrate that BCMO provides better 

results than the PSO algorithm in computing time, convergence 

rate, mean weight, and optimum solutions. Finally, the study 

proves that BCMO can be a good alternative for solving any 

optimization problems.  

Keywords: 3D truss structure, American Institute of Steel 

Construction (AISC 360-16), Weight minimization, Balancing 

Composite Motion Optimization (BCMO)  

1. Introduction 

The meta-heuristic algorithms are widely used due to their 

utilization of solving complex optimization problems including 

the size optimization for planar and spatial trusses. [2] The 

concept of meta-heuristic algorithms is to utilize the search and 

solving procedures by natural phenomena, human behaviors, 

and animal behaviors. The purpose of meta-heuristic 

algorithms is to explore the search space to determine near-

optimal solutions with efficiency and obtain the optimum 

solution from the process. For truss optimization, most of the 

meta-heuristic algorithms are used to implement the 

optimization process. [3] Due to many constraints including 

both equality and inequality constraints and a wide range of 

design variables, the meta-heuristic algorithms are appropriate 

alternatives due to the ability to search global minima in high 

modal and multidimensional spaces.  

However, most of the meta-heuristic algorithms are still 

complicated and time-consuming sometimes. This is due to 

parameter-dependent problems in the algorithms. These 

parameters not only obstruct users from effectively tuning the 

algorithms but also make dealing with various kinds of 

optimization problems Selecting unsuitable parameters can 

create an unbalance between exploration and exploitation 

capacities [4]. [5] For example, if an algorithm focuses on local 

exploitation, this algorithm may be trapped in local optima. 

Otherwise, if an algorithm is more focused on global 

exploration, its convergence speed will be significantly 

reduced. In addition, it affects the clarity of the method and 

leads to mistakes during implementation for finding optimum 

solutions [6].  

To find the optimum result without any unbalance 

conditions, this project illustrates a parameter-free and 

population-based optimization method called Balancing 

Composite Motion Optimization (BCMO) inspired by Thang 

Le Duc et al. [4]. BCMO does not need any parameters for the 

optimum solution-searching process. In BCMO, the solution 

space is assumed to be a Cartesian one and the searching 

movements of candidate solutions are compositely equalized in 

both global and local ones without any encoding and decoding 

procedures. The candidate solution can move closer to better 

ones to exploit the local regions and global regions in the same 

cartesian space. Therefore, the best-ranked individual in each 

generation can jump immediately from space to space or 

intensify its current local space and create a balance between 

exploration and exploitation capacities. With our interest in the 

significance of the truss for any building and the process of 

optimization which leads things to the best, this project, 

focusing on structural size optimization proposes weight 

minimization of 3D truss using the new optimization method 

called Balancing Composite Motion Optimization (BCMO), a 

Meta-heuristic algorithm. We aim to develop this new 

methodology to apply it to the truss design of the circular 

hollow and angle steel section from AISC-LRFD design and 

obtain efficient design solutions.  

 

2. Literature review 

There are many pieces of research about the weight 

minimization of steel trusses. Tran. [7] proposed the idea of 

genetic algorithms solving the size optimization problems 

mainly the planar truss and Dede et al. [8] also proposed weight 

minimization applied with plane and space trusses by using 

value and binary encodings with a genetic algorithm (GA). 

According to the weight minimization and GA, GA requires an 

enormous size of search space for computing the optimum 

solution and many parameters to adjust for the weight 

minimization of trusses. Later, Gomes [9] investigated the use 

of a particle swarm optimization (PSO) algorithm for the 

weight minimization of trusses. PSO has proven that it can 

efficiently search a huge size of search space and discrete 

design variables with fewer parameters and time-consuming 

than GA. There are many meta-heuristic algorithms inspired by 

the nature and social behaviors that also be used for the weight 

minimization of trusses including the Chaotic coyote 

algorithm, Turbulent Flow of Water-based Optimization, and 

Politics Optimizer from Pierezan et al. [10], Khaing [2] and 

Awad et al. [11], respectively. These algorithms require fewer 

parameters than PSO algorithms and are proven they can 

efficiently search a huge size of search space and compute the 

optimal solutions with discrete and continuous design variables 

for both complex planar and space trusses. However, all of 

these algorithms are still parameter-dependent problems in the 

algorithms. Therefore, there is a research paper about the 

weight minimization of trusses with parameter-free algorithms 
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called the Jaya algorithm from Degertakin [12]. Nevertheless, 

Jaya's paper does not include AISC-LRFD for the optimization 

process. There are many pieces of research that can be related 

to AISC-LRFD design including the size and shape 

optimization of trusses from Khaing [2] and Nasrollahi et al 

[13], respectively. For other structures like steel frames, there 

are also research papers studying weight minimization by using 

AISC-LRFD design from Dogan et al. [14] and Ky [15].  

 For the BCMO algorithm, BCMO has proven that BCMO 

can provide the optimal solution with efficiency and accuracy 

based on the previous studies of the BCMO algorithm such as 

solving the optimization problems of stochastic vibration and 

buckling behaviors of functionally graded porous microplates 

with uncertainties of material properties from Tran et al. [16], 

the optimization design of rectangular concrete-filled steel tube 

short columns with Balancing Composite Motion Optimization 

and data-driven mode from Huan et al. [17] and the damage 

detection in beam structures using Bayesian deep learning and 

balancing composite motion optimization from Nguyen [18]. 

For this project, under the specification of AISC-LRFD design, 

the BCMO algorithm is used to determine the optimum 

solutions from the weight minimization of steel trusses and 

eliminate parameter-dependent problems for optimization.  

 

3. Problem Description 

In this project, the objective is to minimize the weight of 

the 3D truss structure. Weight minimization can provide 

enormous benefits in various aspects including reducing the 

costs of construction as well as increasing the performance of 

construction. To formulate the optimization statement, three 

components, which are the objective function, constraints, and 

design variables are used to optimize the weight of the truss 

structure. Cross-sectional areas are considered as discrete 

design variables and the number of discrete design variables 

called the search space are from the allowable list from the 

standard section of Round HSS grade B. The truss design is 

under the specification of the AISC-LRFD design. The general 

formulation of the objective function is presented as the single 

objective function. The objective function is the function to 

optimize the weight of the structure which is directly relevant 

to the cross-sectional area. [21] The constraints including 

inequality constraints are the requirements referred to in the 

specification of the AISC-LRFD design to examine the safety 

and serviceability requirements for the optimization process. In 

addition, the constraints can be applied to the objective function 

by penalty function to convert the constrained objective 

function to an unconstrained objective function. In the process 

of analyzing the optimum solutions, the analysis process 

applying the BCMO algorithm is calculated by MATLAB 

program. The result from BCMO algorithms will be compared 

with the previous studies of the weight minimization of trusses 

by solving the benchmark problems of the 3D truss structure. 

4. Research Procedures and Methodology 

In the process of weight minimization of 3D steel trusses, 

first, it is necessary to research the relevant information sources 

about the 3D truss and sizing optimization such as the direct 

stiffness method and the basic concepts of BCMO algorithms. 

Then, state the optimization problem which is the weight 

minimization of the truss is the objective function, the design 

variable is the cross-section area, and the constraints are under 

the specification of the AISC-LRFD method. Then, apply the 

BCMO algorithm process with the truss design under the 

specification of the AISC-LRFD method and examine the 

constraints violation to obtain the optimum solutions. Then, 

analyze the results with numerical examples. Then, provide the 

results of the examples of the discrete optimization benchmark 

problems of truss structure and illustrate the solution 

convergence which is from the results and the number of 

iterations. Then, compare the results of the BCMO algorithms 

with the various design methods and the previous study of the 

weight minimization of the truss. Finally, summarize the brief 

process information of the optimization, efficiency, and 

accuracy of the result compared with the other methods.  

  

 

Figure 1. 3D tower truss 

  

5. Optimization statement 

The objective function must be subjected to the constraints 

to formulate the optimization method as follows:  

Find A = {A1, A2, A3,……AnE}  A ∈ Di   

 

To Minimize W(A) =  

 

∑ 𝝆𝒊𝑨𝒊𝑳𝒊
𝒏𝑬
𝒊=𝟏  ; i =1,2,3,…,nE              (1) 

 

Where A is the vector of the cross-sectional area with nE 

unknowns, Di is a set of discrete values with the ith cross-

sectional area, ρ is the density of the material, L is the length of 

the element, A is the cross-section area of the element and nE 

is the number of the elements.   

 

Subject to:  

In the case of tension force, according to AISC-LRFD design, 

the ultimate tensile force in each element must not exceed the 

available tensile strength of the element. Therefore, this 

constraint can be illustrated as follows:  

 

Pu ≤ ØtPn                 (2) 

 

Where Pu is the ultimate element’s tensile force, Øt is the 

resistance factor for tension which Øt = 0.9 and Pn is the 

nominal tensile strength of the element and Pn = AgFy where Fy 

is the yield stress of steel and Ag is the gross-section area which 

Ag = A in this study.  

In the case of compressive force, according to AISC-LRFD 

design, the compressive force in each element must not exceed 

the compressive strength of the element. Therefore, this 

constraint can be illustrated as follows:  

 

Pu ≤ ØcPn                (3) 

 

Where Pu is the ultimate element’s compressive force, Øc is 

the resistance factor for compression which Øc = 0.9 and Pn is 

the nominal compressive strength of the element and Pn = 

AgFcr where Ag is the gross-section area which Ag = A in this 

study and Fcr is determined as follows:  
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𝑭𝒄𝒓 =  {
𝟎. 𝟔𝟓𝟖𝝀𝒄

𝟐

𝑭𝒚     𝒊𝒇 𝝀𝒄 < 𝟏. 𝟓
𝟎.𝟖𝟕𝟕

𝝀𝒄
𝟐 𝑭𝒚            𝒊𝒇 𝝀𝒄 ≥ 𝟏. 𝟓

           (4) 

 

Where λc is defined as follows:  

 

𝝀𝒄 = max {
𝑲𝑳

𝒓
√

𝑭𝒚

𝑬
}               (5) 

 

Where KL, r, and E are the effective buckling length, radius of 

gyration and modulus of elasticity, respectively. K = 1.0 and 

radius of gyration are selected from the allowable list from the 

standard section of Round HSS and angle section.  

The limit values of slenderness are illustrated as follows:  

 

𝝀𝒊 = {

𝑲𝑳

𝒓
 ≤ 𝟑𝟎𝟎              𝒇𝒐𝒓 𝒕𝒆𝒏𝒔𝒊𝒍𝒆 𝒎𝒆𝒎𝒃𝒆𝒓

𝑲𝑳

𝒓
 ≤ 𝟐𝟎𝟎  𝒇𝒐𝒓 𝒄𝒐𝒎𝒑𝒓𝒆𝒔𝒔𝒊𝒐𝒏 𝒎𝒆𝒎𝒃𝒆𝒓

         (6) 

 

the deflection constraints of each node are given as:  

 

𝛅𝐢  ≤  𝛅𝐦𝐚𝐱 ; i =1,2,3,…,nN             (7) 

  
Where 𝛅𝐢 is the deflection of each node and nN is the number 

of nodes and 𝛅𝐦𝐚𝐱  is the maximum deflection of nodes 

depending on the structure 

 

In this study, the material properties are illustrated as follows: 

 

Fy = 345 MPa, E = 200 GPa, ρ = 7800 kg/m3  

 

6. Balancing composite motion optimization for weight 

minimization of the trusses 

According to the BCMO’s procedure from T. Le Duc [4] 

and the weight minimization of trusses, we can apply BCMO 

algorithm step-by-step procedures. First, define the essential 

components of optimization problems, the number of 

populations (NP), max generation, the lower bound, upper 

bound, and the number of design variables of problems. Then, 

analyze the trusses by direct stiffness method. The AISC-LRFD 

specifications from equations (2)-(7) are applied as a penalty 

function. Then, define suitable parameters for the penalize 

objective function. then, calculate the weight of the structure of 

individuals in the population. Finally, rank the individuals 

according to their weight of truss structures.  

For BCMO algorithm, first, after ranking the individuals 

according to their weight of truss structures, the individual that 

has the least weight of truss in the population x1
 t is compared 

to the trial vector, u1
t. Then, the less weight between the 

individual and the trial vector is the instant global point xt
Oin. 

Then, update the position of the individual from the second 

individual until all individuals from the number of populations 

are updated. Then, calculate the weight of the structure of 

individuals in the population and rank the individuals according 

to their weight of truss structures. Then, reiterate the trial 

vector, u1
t until it reaches the maximum generation. Finally, 

illustrate the best optimum results.  

 

 In Figure 2. Illustrates the flowchart of BCMO for weight 

minimization of the trusses. The flowchart summarized the 

procedures and algorithm for weight minimization of the 

trusses as follows: 

  

 

 

 

Figure 2. Flowchart of weight minimization of trusses by the 

BCMO algorithm 
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7. Numerical results 

The objective is to minimize the weight of the truss using 

discrete variables and design followed by AISC-LRFD. The 

design variables are cross-sectional areas of all members. For 

each design example, 10 independent runs were performed by 

BCMO, and computed the best, average, and standard deviation 

of the results were presented for each problem. The obtained 

results of BCMO were compared with the results from the PSO 

algorithm. The proposed algorithm and direct stiffness method 

for analysis of truss structures were evaluated in MATLAB and 

all runs were performed on a 64-bit computer with an Intel Core 

i5 (2.30 GHz) processor and 8.00 GB of RAM. For this section, 

3 examples of the bar space trusses including the spatial 72-bar 

truss, 397-bar suspension tower truss, and the spatial 942-bar 

tower truss are examined by the  BCMO algorithm, The results 

are compared with the other’s research papers to compare the 

quality of BCMO’s results with the other optimization method 

as follows:  

 

7.1 The spatial 72-bar truss 

 

          This structure is evaluated with the BCMO algorithm to 

find the optimum result of the truss structure design followed 

by AISC-LRFD. According to section 2.4 and defines the 

maximum displacement constraint of 5 mm. The elements and 

nodes are illustrated in Figure 3., respectively. The loading 

data case 1 and grouping details are presented in Dede et al. [8] 

The project divided the problem into 2 case studies: the HSS 

section and the angle section member. 

 

Figure 3. 72- bar space truss’s MATLAB Plot 

Figure 4. Comparison of the convergence rates of the BCMO 

algorithms for 72-bar space truss structure (HSS Section) 

Table 1. Optimum design comparison for the 72-bar space truss 

structure (HSS Section)  

 

According to Table 1. and Figure 4., for HSS section steel 

members, the best weight is 370.18 kg from both algorithms. 

Although both algorithms provide the same optimum solution. 

BCMO computes less time than the PSO algorithm by 

computing time for 1,176 seconds while PSO computes for 

1,297 seconds but PSO provides slightly better in the mean 

weight and the standard deviation by 371.44 kg and 0.922 

respectively. 

Figure 5. Comparison of the convergence rates of the BCMO 

algorithms for 72-bar space truss structure (Angle Section) 

Table 2. Optimum design comparison for the 72-bar space truss 

structure (Angle Section) 

According to Table 2. and Figure 5., for angle steel 

members, the best weight is 634.748 kg from the PSO 

algorithm. PSO significantly decreases the optimum solution 

till the 250th generation converges to the optimum solution. 

BCMO’s best weight is 952.82 kg which differs by 

approximately 33.4%. BCMO’s convergence rate improves till 

the 450th generation converges to the optimum solution. 

Although PSO gives the best results, focusing on the 

optimization process and data, BCMO has more consistency in 

optimum solution due to the standard deviation and less 

computing time than the PSO algorithm by computing time for 

1,101 seconds while PSO computes for 1,278 seconds. 

To compare the HSS steel section with the angle steel 

section members, there is an enormous difference in the best 

weight in the PSO algorithm and a fair difference in the BCMO 

algorithm. Due to different sets of discrete design variable 

between HSS steel section and angle steel section members, the 

optimum solutions from both algorithms are also different. 

Nevertheless, according to the results, PSO still provides better 

optimum solutions and the mean weight than BCMO and 

converges to the optimum solution faster than BCMO. 
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7.2. The 397-member, 220 kV suspension tower 

 
The 397-suspension tower truss is used to verify these 

algorithms to examine the truss that is bigger than the 72-bar 

spatial truss and can be utilized. The 397-suspension tower 

truss is made up of 397 members with 31.5 m. high. It is a lattice 

tower with two earth-wire peaks to carry the optical 

communication wires and the support structure for overhead 

transmission lines to support the conductors and lightning 

conductors. The structure consists of 397 members of steel 

sections and 120 nodes. The elements and nodes are illustrated 

in Figure 4.13. and Figure 4.14., respectively. The loading data 

are referred from Tort [22].  

 
Figure 6. 397-bar suspension tower truss’s MATLAB Plot 

 

 
 
Figure 7. Comparison of the convergence rates of the BCMO 

algorithms for 397-bar suspension tower truss structure (HSS 

section members) 

 

Table 3. Optimal design comparison for the 397-suspension 

tower truss structure (HSS section members) 

 

 
 

According to Table 3. and Figure 7., for HSS Section, the 

best weight is 6,949.6 kg from PSO algorithm while BCMO’s 

best weight is 7,059.2 kg which differs approximately 1.55 % 

from BCMO algorithms. BCMO’s and PSO’s convergence rate 

remain stable from the start during initialized phase then. Both 

algorithms improve significantly till the 250th generation 

converges to optimum solutions. Although PSO gives the best 

results, BCMO has less computing time than PSO algorithm by 

computing time for 6,178 seconds while PSO computes for 

6,457 seconds. PSO provides better the optimum solution and 

the mean weight for this problem.   

 

 
 

Figure 8. Comparison of the convergence rates of the BCMO 

algorithms for 397-bar suspension tower truss structure (Angle 

section members) 

 

Table 4. Optimum design comparison for the 397-suspension 

tower truss structure (Angle section members) 

 

 
 

According to Table 4. and Figure 8., for angle section 

members, the best weight is 6893.8 kg from PSO algorithm 

while BCMO’s best weight is 7009.9 kg which differs 

approximately 1.66% from BCMO algorithms. PSO’s 

convergence rate remains the same during the initialized phase 

and converges to the optimum solution in the 150th generation, 

while BCMO’s convergence rate remains the same during the 

initialized phase and converges to the optimum solution in the 

250th generation Although PSO gives the best results, focusing 

on the optimization and data, BCMO has less computing time 

than PSO algorithm by computing time for 14,465 seconds 

while PSO computes for 17,662 seconds.  

To compare both cross sections area, The best weights are 

similar are 6949.6 and 6893.8 kg. The PSO algorithm gives 

slightly better results for both sections while the BCMO 

algorithm gives better time in both sections and there is an 

enormous difference between both steel sections. 

 

7.3 The spatial 942-bar tower 

 

The large number of truss members are considered to 

evaluate BCMO’s efficiency and accuracy. The structure 

consists of 942 members of steel sections, and 244 nodes. The 

elements and nodes are illustrated in Figure 9. For this 

structure, the cross-section areas of the 942-bar’s members of 

the truss are classified into 59 groups as the number from 

Figure 4.18. The optimization process is under the optimization 

statement according to section 2.4 and defines the maximum 

displacement constraint of 15 in. referred from Degertekin [23]. 
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Figure 9.  942-bar spatial tower truss’s MATLAB Plot 
 

 
 

Figure 10. Comparison of the convergence rates of the BCMO 

algorithms for 942-bar spatial tower truss structure (HSS 

section members) 

 

Table 5. Optimal design comparison for the 942-spatial tower 

truss structure (HSS section members) 

 

 
 

 

 

According to Table 5. and Figure 10., for HSS members, 

the best weight is 15680.00 kg from PSO algorithm while 

BCMO’s best weight is 16019.453 kg which differs 

approximately 2.16 % from PSO algorithms. BCMO’s and 

PSO’s convergence rate remain stable from the first generation 

until 20th generation and start to significantly improve the 

optimum solution till the 200th generation to converge to 

optimum solutions. Although PSO gives the best results, 

focusing on the optimization process and data, BCMO has more 

consistency in optimum solution due to the standard deviation 

and less computing time than PSO algorithm by computing 

time for 1297.112 seconds while PSO computes for 1516.722 

seconds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Comparison of the convergence rates of the BCMO 

algorithms for 942-bar spatial tower truss structure  

(angle section members) 

 

Table 6. Optimal design comparison for the 942-spatial tower 

truss structure (angle section members) 
 

 
 

 

According to Table 6. and Figure 11., for HSS members, 

the best weight is 12,494 kg from PSO algorithm while 

BCMO’s best weight is 13,740.17 kg which differs 

approximately 9.07 % from PSO algorithms. BCMO’s and 

PSO’s convergence rate remain stable from the first generation 

until 50th generation and start to significantly improve the 

optimum solution till the 350th generation to converge to 

optimum solutions. BCMO has less computing time than PSO 

algorithm by computing time for 21517 seconds while PSO 

computes for 25754 seconds. 

 
 

8. Conclusion 

The project presents the weight minimization of 3D steel 

truss under applied force and constraints of AISC-LRFD design 

by using the new meta-heuristic optimization found in 2020 

called “Balancing Composite Motion Optimization” or BCMO 

algorithm. The project aims to study the performance in terms 

of efficiency and accuracy of the algorithm by comparing 

BCMO with PSO algorithm. The project evaluates BCMO 

algorithm’s accuracy with 3 benchmarks problem such as the 

5-bar statically determinate truss, the 6-bar statically 

determinate truss and the 25-bar space truss and compares with 

PSO and the previous study from the others. In this part, we set 

the default setting of GA and PSO. The result is BCMO can 

give the exact solution like GA and PSO. In addition, BCMO 

can give less computing time and a smaller number of analyzes 

than these methods.  

 For test problems in section 4.2, the project uses 3D truss 

such as the 72-bar space truss, 397-bar suspension tower truss, 

and 942-bar spatial tower truss as the benchmark problems. We 

evaluate the truss with HSS and angle steel section members 

for these problems except 942-bar spatial tower truss. Setting 

the parameters for both PSO and BCMO algorithm, if we 

evaluate the enormous truss members, a lot of number of 

population sizes and the small amount of constrain violation 

parameter are required for the problems. The results for these 

test problems are for all the problems. According to the results, 

the project found that the more the number of population size, 
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the more probability of getting fewer optimum results and more 

computing time for BCMO’s optimization process. PSO give 

the better results in optimum weight, the mean weight and the 

convergence rate. This is due to the efficiency of balancing 

between exploration and exploitation. However, from the 

results, BCMO can give the optimum solution faster than PSO. 

It takes less computing time, and the optimum solutions in each 

generation are more consistent than PSO which mean there are 

more adjacent optimum solution in each generation than PSO.  

 According to the results from test problems, BCMO may 

be unsuitable for the large-scale of problem comparing with 

PSO algorithm, however, with the parameter-free that easily 

usable and less-computing time, if BCMO is develop in the 

future, the algorithm could be one of the most usable 

optimizations in the future.   
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